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Abstract

An application of the analytical approach of receptance for the analysis of vibration and stability of a structure with

multiple linear and torsional springs of different stiffness attached to an axially loaded beam is described. The beam–spring

combination is a typical analytical model that is often used as the benchmark to verify frequency and buckling data

obtained by numerical algorithms and full structural models. Solutions of the analytical model also provide the necessary

understanding of system properties in the process of establishing numerical models. Although vibration and buckling

characteristics of a structural model with multiple linear and torsional components can be obtained by directly solving

governing differential equations, the process can become quite complicated if there are a large number of attachments with

a wide range of stiffness values. A receptance procedure proposed in the present study provides a simple and accurate

alternative. The approach is an approximation method similar to sub-structuring techniques. By retaining only the

essential interactions between the major structure and attached components, the analysis is much simplified. The present

study illustrates the simplicity and effectiveness of this approach. A parametric study is also given and compared with the

finite element result. Good agreement indicates the accuracy of the approximation.

r 2007 Published by Elsevier Ltd.
1. Introduction

An application of the receptance approach for the analysis of vibration and stability of a structure with
multiple linear and torsional springs of different stiffness attached to a beam subjected to an axial load is
described. The example problem is selected for its simple geometry and solutions available in the limiting
cases, although the procedure is intended for more general structural forms with complicated attachments.

The beam–spring combination is a standard analytical model that is often used as the benchmark to verify
frequency and buckling data obtained by numerical methods and full structural models. Solutions of the
analytical model also provide information on the system properties that is needed in the process of establishing
numerical models. Therefore, even with the availability of finite element solutions, analytical studies of
simplified models are still useful and necessary.
ee front matter r 2007 Published by Elsevier Ltd.
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An advantage of using the receptance method is that the receptances of the subsystems may be determined
by any analytical, experimental, or numerical method. For most applications, it simplifies the analytical
procedures and yields accurate solutions. Duncan [1] who originated the method used the term admittance
rather than the term receptance that was coined in the text of Bishop and Johnson [2]. Wissenberger [3]
reported the effect of local modifications on vibration of linear systems. Jacquot and Soedel [4] studied
vibration of elastic surface systems carrying dynamic elements. The topic of beams with a variety of attached
elements was treated in the work of and Jacquot and Gibson [5]. Pomazal and Snyder [6], Dowell [7] and
Hallquist and Snyder [8] also did fundamental research in the area of local modifications to linear systems.
Even though the receptance method is widely used [9–14] to obtain global vibration characteristics of complex
structures, a literature survey indicates that it has not been used in the analysis of buckling, although by nature
buckling can also be treated as a similar eigenvlaue problem. In the present paper, a structure with multiple
attachments is considered. The structure is subjected to axial forces and oscillations. Behaviors of this
combination are complicated. There are limiting cases: As the excitation frequency is zero, it is a pure buckling
problem; as the axial load becomes zero, it is a free vibration problem. When neither is zero, it is then a general
eigenvalue problem.

Following the development of receptance analysis, a parametric study was conducted to show the
effectiveness and accuracy of the approximate analysis. Parameters considered include the type, the quantity,
the location and the stiffness of springs and their effects on vibration and buckling characteristics. The results
obtained agree well with those obtained from the finite element method.
2. The receptance approach

When a sub-structure is added to the main structure, the receptance method is applied by adding the point
receptances of the sub-structure to those of the major structure at the interface. For instance, a simply
supported beam with n lateral supports, each consists of a linear spring and a torsional spring, as illustrated in
Fig. 1, can be viewed as the case where the supports (the sub-structures) are added to the beam (the main
structure). At the interface of the beam and the lateral supports, in general, there are the axial and the
transverse displacements and the axial slope; therefore, appropriate point force or point moment connections
should be considered. However, the receptance due to axial displacements of the beam may be neglected
because the magnitude is much smaller, and only the transverse displacements and the axial slope changes
need to be considered. The relevant loading connection at the interface of the beam and each support is
simplified to a point force connection (representing the linear spring) coupled with a point moment connection
(representing the torsional spring), as is shown in Fig. 2.

The point force and point moment at the interface result in linear displacement and angular displacement,
respectively. The displacement (or slope) amplitudes, X u

Ai (u ¼ 1�n, i ¼ 1–2) can be expressed as functions of
point force (or moment) amplitudes, Fv

Aj (v ¼ 12n; j ¼ 122)

fX u
Aig ¼ ½a

uv
ij �

TfFv
Ajg, (1)
Fig. 1. A simply supported, axially loaded beam is stiffened by n lateral supports; each consists of a linear spring and a torsional spring

with different stiffness.
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Fig. 2. The axially loaded beam is subjected to a point force and a point moment, due to the effect of the linear spring and the torsional

spring, respectively. As the interactive loadings are harmonic, the beam–spring combination will oscillate. If the excitation frequency is

zero, the interactive loadings become static.
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where the auv
ij are the receptances of system A (the beam); the superscript u indicates the order number of the

interface between the spring and the beam; the superscript v indicates the order number of the interactive load.
The subscript i represents the type of displacement, namely, 1 for the linear displacement and 2 for the slope.
The subscript j represents the type of load, namely, 1 for the force and 2 for the moment. Similarly,

fX u
Big ¼ ½b

uv
ij �

TfF v
Bjg, (2)

where buv
ij are the receptances of system B (the spring support). For the springs, the receptances buv

ij exist only
for u ¼ v and i ¼ j, due to zero coupling of the linear spring motion to the torsional spring motion. When the
receptance is applied to add a sub-system B to a major system A, with no external forces (or moments) applied
to the two systems, the force (or moment) equilibrium and displacement (or slope) compatibility must be
satisfied.

Combining Eqs. (1) and (2), and applying the above equalities gives

a1111 þ b1111 a1211 � a1n
11 a1112 a1212 � a1n

12

a2111 a2211 þ b2211 � a2n
11 a2112 a2212 � a2n

12

� � � � � � � �

an1
11 an2

11 � ann
11 þ bnn

11 an1
12 an2

12 � ann
12

a1121 a1221 � a1n
21 a1122 þ b1122 a1222 � a1n

22

a2121 a2221 � a2n
21 a2122 a2222 þ b2222 � a2n

22

� � � � � � � �

an1
21 an2

21 � ann
21 an1

22 an2
22 � ann

22 þ bnn
22

2
6666666666666664

3
7777777777777775

F1
A1

F2
A1

�

Fn
A1

F1
A2

F2
A2

�

Fn
A2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼ 0, (3)

where F 1
A1, F2

A1 . . .F
n
A1 are the interactive forces, and F1

A2, F 2
A2. . .

n
A2 are the interactive moments. In order to

get a non-trivial solution for the force vector, the 2n� 2n determinant of the receptance matrix given in Eq. (3)
must be equal to zero. For the general case of a beam with n lateral supports, as shown in Fig. 1, the system
frequency equation and the buckling load equation can be expressed as

:

a1111 þ b1111 a1211 � a1n
11 a1112 a1212 � a1n

12

a2111 a2211 þ b2211 � a2n
11 a2112 a2212 � a2n

12

� � � � � � � �

an1
11 an2

11 � ann
11 þ bnn

11 an1
12 an2

12 � ann
12

a1121 a1221 � a1n
21 a1122 þ b1122 a1222 � a1n

22

a2121 a2221 � a2n
21 a2122 a2222 þ b2222 � a2n

22

� � � � � � � �

an1
:21 an2

21 � ann
21 an1

22 an2
22 � ann

22 þ bnn
22

��������������������

��������������������

¼ 0. (4)

The stiffness and receptance of the springs (the linear and the torsional springs) can be different, namely
b1111ab2211a � � �abnn

11 in Eq. (4).
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3. Formulation of receptance

3.1. Beam receptances due to displacement and slope caused by harmonically excited interactive force at the

interface

For a simply supported, axially loaded beam with one lateral support consisting of a linear spring and a
torsional spring, the interactive loadings at the interface are represented by a point force and a point moment,
as illustrated in Fig. 2. With a compressive axial load P at each end and a transverse point force f 0dðx� x0Þ at
x0, the moment Mx on the cross-section of the beam at arbitrary location x is

Mx ¼

�Pyþ
f 0x

L
ðL� x0Þ; 0oxox0;

�Pyþ
f 0x

L
ðL� x0Þ � f 0ðx� x0Þ; x0oxoL;

8>><
>>:

(5)

where y is the transverse deflection, f 0 the amplitude of the lateral force, L the length of the beam, dðx� x0Þ

a Dirac-delta function. With the moment on the arbitrary cross-section of the beam denoted in the
form of Eq. (5), the nonhomogeneous buckling equation of the beam–spring combination can be
expressed as

EI
d2y

dx2
þ Py ¼ �f 0ðx� x0Þuðx� x0Þ þ

f 0x

L
ðL� x0Þ, (6)

where uðx� x0Þ is a unit step function. In a vibrating beam, the interactive force is harmonic as f 0e
jotdðx� x0Þ

and the transverse deflection yðx; tÞ is Y ðxÞejot. Upon considering the inertia, the differential equation for the
transverse vibration of the beam is

EI
d4Y ðxÞ

dx4
þ P

d2Y ðxÞ

dx2
� rAo2Y ðxÞ ¼ �f 0dðx� x0Þ, (7)

in which r is the mass density of the material, A the cross-sectional area of the beam, EI its flexural rigidity,
and o the excitation frequency. The complementary solution of Eq. (7) is

Y ðxÞ ¼ C1 coshðl1xÞ þ C2 sinhðl1xÞ þ C3 cosðl2xÞ þ C4 sinðl2xÞ, (8)

where

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP=2EIÞ2 þ rAo2=EI

q
� P=2EI

� �1=2

and

l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP=2EIÞ2 þ rAo2=EI

q
þ P=2EI

� �1=2

Substituting the boundary conditions into Eq. (8) and solving its coefficients, we get the time-dependent
transverse deflection of the axially loaded beam due to a harmonic lateral force f 0e

jot at axial location x0 to be:

yf 0
ðx; tÞ ¼

X1
m¼1

f 0 sinðmpx0=LÞ sinðmpx=LÞejot

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
: (9)

The receptance of the beam due to its displacement response yf 0
ðx; tÞ to the harmonic lateral force f 0e

jot at the
interface is defined as auv

11 ¼ yf 0
ðx; tÞ=f 0e

jot, which is

auv
11 ¼

X1
m¼1

sinðmpxu=LÞ sinðmpxv=LÞ

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
, (10)

where the subscripts u ¼ 1�n and v ¼ 1�n.
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The receptance due to the slope response of the beam to the harmonic lateral force f 0e
jot at the interface is

defined as auv
21 ¼ ðqyf 0

=qxÞ=f 0e
jot, which is expressed as

auv
21 ¼

X1
m¼1

ðmp=LÞ cosðmpxu=LÞ sinðmpxv=LÞ

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
. (11)

3.2. Beam receptances due to displacement and slope caused by harmonically excited interactive moment at the

interface

A concentrated moment M0 can be defined by two forces that are separated by an infinitesimally small
distance � and are of the same magnitude f 0 but opposite direction, namely, lim�!0f 0� ¼M0. Applying this
definition to Eq. (9) and multiplying its nominator and denominator by �, we have the displacement of a
transversely vibrating beam subjected to a harmonic point moment defined as

yM0
ðx; tÞ ¼ lim

�!0
ðf 0�Þ

X1
m¼1

ejot½sinðmpx0=LÞ � sinðmpðx0 � �Þ=LÞ� sinðmpx=LÞ

�ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
. (12)

Rearranging Eq. (12) and multiplying its nominator and denominator by mp/L, we obtain

yM0
¼ lim

�!0
ðf 0�Þ

X1
m¼1

ejot sin mpx0=L
� �

½1� cos ðmp�=LÞ� þ cos ðmpx0=LÞ sin ðmp�=LÞ
� 	

sinðmpx=LÞðmp=LÞ

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �ðmp�=LÞ
:

(13)

Applying L’ Hospital’s law, we have

lim
�!0

½1� cosðmp�=LÞ�

ðmp�=LÞ
¼ lim

�!0

sinðmp�=LÞ

1
¼ 0 (14)

and

lim
�!0

sinðmp�=LÞ

ðmp�=LÞ
¼ lim

�!0

cosðmp�=LÞ

1
¼ 1. (15)

Substituting Eqs. (14) and (15) into Eq. (13), the transverse deflection of the beam subjected to a harmonic
interactive moment is expressed as

yM0
ðx; tÞ ¼

X1
m¼1

M0½ðmp=LÞ sinðmpx=LÞ cosðmpx0=LÞ�ejot

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
. (16)

The receptance of the beam due to its displacement response yM0
ðx; tÞ to the harmonic interactive moment

M0e
jot at the interface is defined as auv

12 ¼ yM0
ðx; tÞ=M0e

jot, which is

auv
12 ¼

X1
m¼1

ðmp=LÞ sinðmpxu=LÞ cosðmpxv=LÞ

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
. (17)

The receptance of the beam due to the slope response to the harmonic interactive moment M0e
jot at the

interface is defined as auv
22 ¼ ðqyM0

ðx; tÞ=qxÞ=M0e
jot, which is expressed as

auv
22 ¼

X1
m¼1

ðmp=LÞ2 cosðmpxuLÞ cosðmpxv=LÞ

ðL=2Þ½rAo2 þ Pðmp=LÞ2 � ðmp=LÞ4EI �
. (18)
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3.3. Spring receptances

The receptances of the linear springs due to the displacement responses to the interactive forces are defined
as buv

11 ¼ 1=kv
t , where kv

t (v ¼ 1�n) are the stiffness of the linear springs, and u must be equal to v. Similarly, the
receptances of the torsional springs due to the angular displacement responses to the interactive moments are
defined as buv

22 ¼ 1=kv
r , where kv

t (v ¼ 1�n) are the stiffness of the torsional springs.
4. Interpretation of receptance

If the natural frequency of a simply supported beam without axial load is denoted as om

(om ¼ ðmp=LÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
), Eqs. (10), (11), (17) and (18) can be expressed in the following forms:

auv
11 ¼

X1
m¼1

� sinðmpxu=LÞ sinðmpxv=LÞ

rAðL=2Þ½o2
m � ðP=rAÞðmp=LÞ2 � o2�

, (19)

auv
21 ¼

X1
m¼1

�ðmp=LÞ cosðmpxu=LÞ sinðmpxv=LÞ

rAðL=2Þ½o2
m � ðP=rAÞðmp=LÞ2 � o2�

, (20)

auv
12 ¼

X1
m¼1

�ðmp=LÞ sinðmpxu=LÞ cosðmpxv=LÞ

rAðL=2Þ½o2
m � ðP=rAÞðmp=LÞ2 � o2�

, (21)

auv
22 ¼

X1
m¼1

�ðmp=LÞ2 cosðmpxu=LÞ cosðmpxv=LÞ

rAðL=2Þ½o2
m � ðP=rAÞðmp=LÞ2 � o2�

. (22)

In Eqs. (19)–(22), if o2 is equal to o2
m � ðP=rAÞðmp=LÞ2, each receptance becomes infinity. It implies that a

simply supported, axially loaded beam without intermediate support is resonant. Due to the stiffening effect of
the springs, the natural frequencies of the composite structure, which are obtained by solving the system
frequency equation (Eq. (4)) in terms of the receptances defined in Eqs. (19)–(22), are higher than those of an
un-stiffened beam. A compressive axial load decreases the natural frequencies of a structure, while a tensile
axial load (P is negative) increases them.

In a limiting case, as the compressive axial load increases, the frequency of the lowest mode of vibration
approaches zero. It implies that transverse buckling of the structure occurs. This mode of zero natural
frequency is the first buckling mode. In other words, if the excitation frequency in Eqs. (10), (11), (17) and (18)
is zero (o ¼ 0), these equations become

auv
11 ¼

X1
m¼1

ðL=mpÞ2 sinðmpxu=LÞ sinðmpxv=LÞ

ðL=2ÞðP� ðmp=LÞ2EIÞ
, (23)

auv
21 ¼

X1
m¼1

ðL=mpÞ cosðmpxu=LÞ sinðmpxv=LÞ

ðL=2ÞðP� ðmp=LÞ2EIÞ
, (24)

auv
12 ¼

X1
m¼1

ðL=mpÞ sinðmpxu=LÞ cosðmpxv=LÞ

ðL=2ÞðP� ðmp=LÞ2EIÞ
, (25)

auv
22 ¼

X1
m¼1

cosðmpxu=LÞ cosðmpxv=LÞ

ðL=2ÞðP� ðmp=LÞ2EIÞ
. (26)

When the compressive axial load P is equal to one of the buckling loads of a simply supported beam (i.e.,
P ¼ ðmp=LÞ2EI), the receptances defined in Eqs. (23)–(26) become infinite. It implies that the subsystem, the
simply supported beam, buckles.



ARTICLE IN PRESS
D.T. Huang, D.K. Chen / Journal of Sound and Vibration 307 (2007) 941–952 947
5. Numerical results and discussions

The compressive axial load is assumed to be applied at the centroid of the cross-section of a perfect beam.
For convenience, all major parameters are non-dimensionalized. The location of the spring is denoted by C,
C ¼ x/L. The non-dimensional stiffness of the linear spring, kL, is denoted by K̄L, K̄L ¼ kLL3=EI ; whereas the
non-dimensional stiffness of the torsional spring, kT, is denoted by K̄T , K̄T ¼ kT L=EI . The non-dimensional
critical buckling load is denoted by P̄, P̄ ¼ Ps

1=½ðp=LÞ2EI �, where Ps
1 is the system critical buckling load of a

beam–spring combination, while ðp=LÞ2EI is the Euler buckling load. The non-dimensional first natural

frequency is denoted by Ō, Ō ¼ os
1=½ðp=LÞ2

ffiffiffiffiffiffiffiffiffiffiffi
EI=r

p
�, where os

1 is the system first natural frequency of a

beam–spring combination, while ðp=LÞ2
ffiffiffiffiffiffiffiffiffiffiffi
EI=r

p
is that of a simply supported beam.

5.1. Case 1—beam with one lateral support consists of a linear spring and a torsional spring

In Figs. 3(a) and (b), the variation of the first system natural frequency with the location and stiffness of the
springs is shown. Fig. 3(a) shows that if the beam is free from compressive axial load (i.e., P ¼ 0) and with
Fig. 3. Without a compressive axial load (P ¼ 0, plot (a)) or with a compressive axial load (P ¼ 0.4Pcr, plot (b)), the first system natural

frequency of the composite structure varies with location and stiffness of the spring support. Plot (a) B: K̄L ¼ K̄T ¼ 100,
J: K̄L ¼ K̄T ¼ 200; and n K̄L ¼ K̄T ¼ 500. Plot (b) B: K̄L ¼ K̄T ¼ 100, J: K̄L ¼ K̄T ¼ 200; and n: K̄L ¼ K̄T ¼ 500.
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K̄L ¼ K̄T ¼ 100, the maximum ratio of the first natural frequencies, Ō, is 2.012 as the support is located at
C ¼ 0.2 or 0.8; while Ō is 1.729 when the support is at C ¼ 0.5. It indicates that, if both the linear and the
torsional springs are soft, the torsional spring, which resists angular displacement, is inactive if C ¼ 0.5;
therefore, the C ¼ 0.5 case effectively only has the linear spring. As the springs become stiffer, the shape of the
Ō� C curve changes from concave to convex. As K̄L ¼ K̄T ¼ 200, the maximum Ō is 2.225, with springs
located in the region between C ¼ 0.42 and 0.58. As the stiffness of the linear spring increases further, the
maximum Ō occurs with the support located at C ¼ 0.5. For the cases of K̄L ¼ K̄T ¼ 500, the maximum Ō is
3.128.

A similar situation happens to the beam–spring combination with a compressive axial load. Fig. 3(b) shows
that if the compressive axial load is 40% of the critical buckling load of a simply supported beam, for the case
of K̄L ¼ K̄T ¼ 100, the maximum Ō is 1.888 when the springs are located at C ¼ 0.2; while Ō is 1.609 when the
springs are located at C ¼ 0.5. For the case of K̄L ¼ K̄T ¼ 200, the maximum Ō is 2.11 with the support
located in the region between C ¼ 0.42 and 0.58. For the cases of K̄L ¼ K̄T ¼ 500, the maximum Ō is 3.055.
By comparing Fig. 3(b), with Fig. 3(a), we found that the compressive axial load decreases the natural
frequencies of the beam–spring combination. If the beam is subjected to a tensile axial load, the system natural
frequencies will be raised.

A stiff linear spring functions as a hinged support, which resists transverse displacement of the beam. With a
stiff linear spring alone at C ¼ 0.5, the simply supported beam of length L becomes a continuous beam with
two equal spans of length L/2. The critical buckling load and the first natural frequency of the beam–spring
combination are four times (Ō ¼ 4, P̄ ¼ 4) those of a beam without intermediate support, as shown in Figs. 4
and 5, respectively. However, a stiff torsional spring alone at C ¼ 0.5, which is the anti-node location of the
first mode of transverse vibration and buckling, does not raise the critical buckling load or the first natural
frequency of the composite structure. A combination of a very stiff linear spring and a very stiff torsional
spring function as a full brace support, which constrains the beam from transverse deflection and rotation. In
theory, the critical buckling load of a clamped–pinned beam is 2.04 times that of a pinned–pinned beam. In
Fig. 4 it is shown that the maximum ratio of the critical buckling loads of the beam–spring combination, with
a very stiff support (K̄L ¼ K̄T ) at C ¼ 0.5, can be 8.17, which matches the exact solution for the buckling load
of a pinned–pinned beam with a length of L/2 (i.e., 4� 2.04 ¼ 8.16). As shown in Fig. 5, the first system
natural frequency of the beam–spring combination without axial load varies with the stiffness of the springs in
a similar manner. However, the maximum ratio of the first frequencies is 6.2, which is smaller than the
maximum ratio for the critical buckling loads.

Without the axial load, the ratio of the first system natural frequency (Ō) is larger than 1 due to the
stiffening effect of the springs. When there is a compressive axial load, the system natural frequency is reduced.
Fig. 4. The critical buckling load of the composite structure varies with stiffness of the springs at C ¼ 0.5. K̄T alone,

– � –; K̄L alone, - - - -; and K̄L ¼ K̄T , ——.
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Fig. 6. The ratio of frequencies varies with the compressive axial load and the stiffness of springs, one support at C ¼ 0.5. K̄L ¼ K̄T ¼ 1,

- - - -; K̄L ¼ K̄T ¼ 10, ——; and K̄L ¼ K̄T ¼ 100, – – –.

Fig. 5. The first natural frequency of the composite structure without axial load varies with the stiffness of springs at C ¼ 0.5. K̄T alone,

– � –; K̄L alone, - - - -; and K̄L ¼ K̄T , ——.
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The larger the compressive axial load, the smaller the first system natural frequency. Fig. 6 depicts how the
first natural frequency and the buckling load of the composite structure vary with the compressive axial load
and the spring stiffness. For example, when K̄L ¼ K̄T ¼ 10, Ō is 1.098, the axial load is zero and Ō approaches
zero as a compressive axial load approaches 1.2 times of the Euler buckling load. It should be noted that the
horizontal intercepts of the curves with various K̄L ¼ K̄T define the curve of the ratio of the critical buckling
shown in Fig. 4. The vertical intercepts of the curves with various K̄L ¼ K̄T become the curve of the ratio of
the first natural frequency in Fig. 5. This demonstrates that in vibration and buckling of the beam–spring
combination, a vibration mode with zero frequency is in essence the first buckling mode.

5.2. Case 2—beam with two separated lateral supports

The stiffening effect with two supports, one at C1 ¼ 1/3 and the other at C2 ¼ 2/3, is similar but stronger
than with one support at C ¼ 0.5. Fig. 7 depicts how the first natural frequency and the critical buckling load
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Fig. 7. The ratio of frequencies varies with the compressive axial load and the stiffness of springs, two supports, one support at C1 ¼ 1/3,

the other at C2 ¼ 2/3, K̄L ¼ K̄T ¼ 1, - - - -; K̄L ¼ K̄T ¼ 10, ——; and K̄L ¼ K̄T ¼ 100, – – –.

Fig. 8. The first buckling mode shape of the beam–spring structure with one support at C1 ¼ 1/3 and the other at C2 ¼ 2/3.

B: K̄L ¼ K̄T ¼ 2eþ 1; &: K̄L ¼ K̄T ¼ 2eþ 2; J: K̄L ¼ K̄T ¼ 2eþ 3; n: K̄L ¼ K̄T ¼ 2eþ 4; and � : K̄L ¼ K̄T ¼ 2eþ 5.

D.T. Huang, D.K. Chen / Journal of Sound and Vibration 307 (2007) 941–952950
of the composite structure vary with the axial load and the stiffness of the two supports. For example, if the
stiffness K̄L ¼ K̄T ¼ 10, Ō is 1.388 when the axial load is zero, compared to 1.098 when there is one support at
C ¼ 0.5; Ō approaches zero as a compressive axial load approaches 1.89 times of the Euler buckling load,
compared to 1.2 with one support at C ¼ 0.5.

In Fig. 8, the first buckling mode of the beam–spring structure with two supports, one at C1 ¼ 1/3 and the
other at C2 ¼ 2/3, with K̄L ¼ K̄T ¼ 20, 2� 102, 2� 103, 2� 104, 2� 105 is shown. When the springs are soft
(K̄L ¼ K̄T ¼ 20 and 200), the shape of the critical buckling mode is a half-wave. When the stiffness increases
to K̄L ¼ K̄T ¼ 2000, the buckling mode resembles a full sine curve with a couple of kinks, which are generated
by the torsional springs. When the linear and the torsional springs are both very stiff (K̄L ¼ K̄T ¼ 2� 105),
the two spring supports function as clamped supports and the buckling mode shape exhibits no displacement
and slope in the middle section of the beam.

With one support moved from C2 ¼ 2/3 to 0.8, the critical buckling modes of the beam–spring combination
change shapes from the ones shown in Fig. 8 to those shown in Fig. 9. When the linear and the torsional
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Fig. 9. The first buckling mode shape of the beam–spring structure with one support at C1 ¼ 1/3 and the other at C2 ¼ 0.8.

B: K̄L ¼ K̄T ¼ 2eþ 1; &: K̄L ¼ K̄T ¼ 2eþ 2; J: K̄L ¼ K̄T ¼ 2eþ 3; n: K̄L ¼ K̄T ¼ 2eþ 4; and � : K̄L ¼ K̄T ¼ 2eþ 5.
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springs are both very stiff (K̄L ¼ K̄T ¼ 2� 105), the buckling mode shape exhibits a half-wave in the middle
section, and there is no displacement and slope in the left and right sections of the beam.

In Figs. 8 and 9, it is shown that vibration and buckling mode shapes vary with the locations and stiffness of
the supports. Vibration and buckling modes with unsymmetrical shapes can be generated by either support
with equal stiffness but at unsymmetrical locations on the beam, or supports with unequal stiffness but at
symmetrical locations on the beam. In theory, the higher-order buckling modes can be obtained, however, in
reality, it is only possible for the first buckling mode to occur.
6. Conclusions

The receptance method, a concept for sub-structuring analysis, is applied to analyze the buckling and modal
characteristics of a structure with attachments subjected to compressive axial loads. The effects of the type, the
quantity, the location and the stiffness of the attachments on the elastic stability and vibration characteristics
of the beam are investigated.

Results obtained in the study agree well with those obtained by the finite element method, confirming the
receptance method as a useful analytical approach in solving general eigenvalue problems. It should be noted
that the intent of this approach is to establish the receptance method for combined vibration and buckling
problems. Examples include plates with stiffening ribs, and general shells with stiffening rings.
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